33 research outputs found

    Revisiting Lightweight Encryption for IoT Applications: Error Performance and Throughput in Wireless Fading Channels with and without Coding

    Get PDF
    © 2013 IEEE. Employing heavy conventional encryption algorithms in communications suffers from added overhead and processing time delay; and in wireless communications, in particular, suffers from severe performance deterioration (avalanche effect) due to fading. Consequently, a tremendous reduction in data throughput and increase in complexity and time delay may occur especially when information traverse resource-limited devices as in Internet-of-Things (IoT) applications. To overcome these drawbacks, efficient lightweight encryption algorithms have been recently proposed in literature. One of those, that is of particular interest, requires using conventional encryption only for the first block of data in a given frame being transmitted. All the information in the remaining blocks is transmitted securely without the need for using heavy conventional encryption. Unlike the conventional encryption algorithms, this particular algorithm achieves lower overhead/complexity and higher data throughput. Assuming the additive white Gaussian noise (AWGN) channel, the performance of the lightweight encryption algorithm under study had been evaluated in literature in terms of throughput under the assumption that the first block, that undergoes conventional encryption, is free of error, which is practically unfeasible. In this paper, we consider the AWGN channel with Rayleigh fading and assume that the signal experiences a certain channel bit error probability and investigate the performance of the lightweight encryption algorithm under study in terms of bit error probability and throughput. We derive analytical expressions for these performance metrics considering modulated signals with and without coding. In addition, we propose an extension to the lightweight encryption algorithm under study by further enhancing its security level without significantly affecting the overhead size and processing time. Via numerical results we show the superiority of the lightweight encryption algorithm under study over the conventional encryption algorithms (like the AES) and the lightweight encryption algorithms proposed in literature in terms of error and throughput performance

    Wireless Sensing, Monitoring and Optimization for Campus-Wide Steam Distribution

    Get PDF
    The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize energy delivery within the steam distribution system. Our approach leverages an integrated wireless sensor and real-time monitoring capability. We make real time state assessment on the steam trap health and steam flow estimate of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observing measurements of these sensors with state estimators for system health. Our assessments are based on a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps status. Experimental results show that the energy signature scheme has the potential to identify different steam trap states and it has sufficient sensitivity to estimate flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. We are able to present the steam flow and steam trap status, sensor readings, and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption

    Real Time Simulation of Power Grid Disruptions

    Get PDF
    DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio
    corecore